

Environmental effects of Swiss milk production – an analysis from the project LCA-FADN

Martina Alig, Daniel Baumgartner, Johanna Mieleitner

44th LCA Discussion Forum, June 21st, 2011

Background

- Data from the project LCA-FADN (2004-2011)
- Financed by FOAG
- Aim: Evaluation of the environmental impacts of Swiss farms
- Data collection over three years (2006-2008) on 100 farms
- Data collected on farm level, allocation to
 14 product groups
- LCA calculation for the whole farm and for each product group
 - => Results for the product group "MILK"

Eidgenössisches Volkswirtschaftsdepartement EVD Forschungsanstalt Agroscope Reckenholz-Tänikon ART

Overview of the data set

=> All milk producing farms from the projects LCA-FADN

	2006	2007	2008
Number of farms	36	74	69
Usable Agricultural Area (UAA; ha)	24	25	25
Number of dairy cows	21	19	20
Milk yield per cow (kg/year)	6800	6600	6800
Amount of milk sold (kg/year)	133'000	115'000	120'000

Agroscop

Overview results (I)

Energy demand per kg milk

5.24 5.05 5.33 MJ-eq./kg milk

GWP per kg milk

1.31 1.33 1.36 kg CO2-eq./kg milk

Eutrophication per kg milk

13.4 14.0 14.8 g N-eq./kg milk

Overview results (II)

Terr. Ecotoxicity CML per kg milk

Aq. Ecotoxicity CML per kg milk

0.020 0.020 0.021 AEP/kg milk

Important input groups

Share of the input groups in the environmental effects per kg milk

Comparison PEP - organic milk GWP after farming system

Comparison PEP - organic milk Terr. ecotoxicity CML after farming system

Comparison farm-types per region Energy demand per kg milk

Comparison of production regions Energy demand per kg milk

Production region

Comparison of production regions Terr. Ecotoxicity CML per kg milk

Production region

Comparison farm-types per region Terr. Ecotoxicity CML per kg milk

Summary (I)

- Big variability in the environmental impacts of 1kg milk
- Organic milk has a significantly lower ecotoxicity compared to PEP-milk
- •Use of pesticides in fodder production varies highly and can lead to high ecotoxicity (plain region)
- ■Farms in the mountain region have a higher energy demand and global warming potential per kg milk than farms in the plain region

Relationship with amount of milk sold

Energy demand vs. amount of milk produced

Relationship with number of cows

Energy demand vs. number of dairy cows

Analysis Energy Demand

2 tendencies:

- •Small farms (few cows, small amount of milk sold) tend to have a higher energy demand per kg milk
- •Farms in the mountain region tend to have a higher energy demand per kg milk
- ⇒ There are more small farms in the mountain region than in the plain region
- \Rightarrow Regression analysis: Only production region hat a significant influence on the energy demand per kg milk (p=0.02) -> environmental conditions in the mountain area matter
- ⇒ BUT: Variability within a production region is higher than the variability between regions -> it is possible to have a low energy demand per kg milk even in the mountain region!

Summary (II)

- Big variability in the environmental impacts of 1kg milk
- Organic milk has a significantly lower ecotoxicity compared to PEP-milk
- Use of pesticides in fodder production varies highly and can lead to high ecotoxicity (plain region)
- ■Farms in the mountain region have a higher energy demand and global warming potential per kg milk than farms in the plain region
- Small milk producers tend to have a higher energy demand and global warming potential per kg milk than big milk producers
- ■STILL: Variability within mountain region / small farms is very high and can only partly be explained by the altitude / size of a farm

Results over different environmental impacts

Overview: low / high group (over all env. impacts, relative to median)

	Everywhere low impacts	Everywhere high impacts
Number of farms	4	5
Types of farms	2 KoVered, 1 VrkMi, 1 KoMiAck	2 VrkMi, 1 KoMiAck, 1 KoVered, 1 AndRi
Farming system	2 organic, 2 PEP	All PEP
Region	2 plain, 2 hill region	2 plain, 3 mountain region
UAA (ha)	31	23
Number of cows	24	15
Milk yield per cow (kg/year)	6700	6600
Amount of milk sold (kg/year)	148'000	77'000

Agroscope

Comparison eutrophication between low and high group

Comparison terr. ecotoxicity between low and high group

Summary (II)

- Big variability in the environmental impacts of 1kg milk
- Organic milk has a significantly lower ecotoxicity compared to PEP-milk
- •Use of pesticides in fodder production varies highly and can lead to high ecotoxicity (plain region)
- ■Farms in the mountain region have a higher energy demand and global warming potential per kg milk than farms in the plain region
- Small milk producers tend to have a higher energy demand and global warming potential per kg milk than big milk producers
- ■STILL: Variability within mountain region / small farms is very high and can only partly be explained by the altitude / size of a farm
- Reasons for good / poor results differ according to farm -> for optimising the environmental impacts of Swiss milk production analyses on a farm by farm basis are necessary

Thank you!

Environmental effects of Swiss milk production | 44th LCA Discussion Forum, June 21st, 2011 Martina Alig et al. | © Forschungsanstalt Agroscope Reckenholz-Tänikon ART

Comparison of PEP and organic milk

Overview of the dataset (Averages 2007/2008)

	PEP	Organic
Number of farms	52	14
UAA (ha)	25.5	24.4
Number of dairy cows	20	19
Milk yield per cow (kg/year)	7000	5800
Amount of milk sold (kg/year)	127'000	99'000

Comparison of production regions

(Averages 2007/2008)

	Plain region	Hill region	Mountain region
Number of farms	30	20	16
UAA (ha)	28	23	23
Number of dairy cows	24	20	13
Milk yield per cow (kg/year)	6900	6500	6700
Amount of milk sold (kg/year	150'000	116'000	73'000